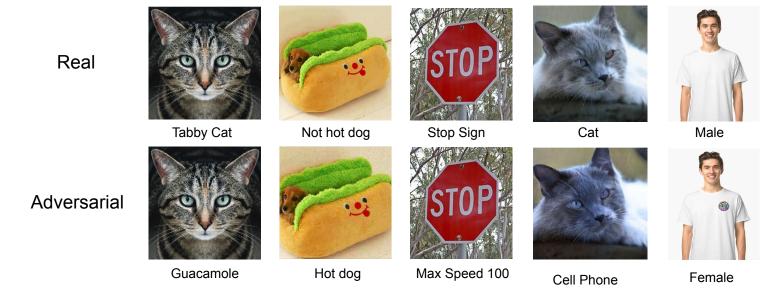


Robustness and Generalization via Generative Adversarial Training

Omid Poursaeed

Adversarial Image Manipulation

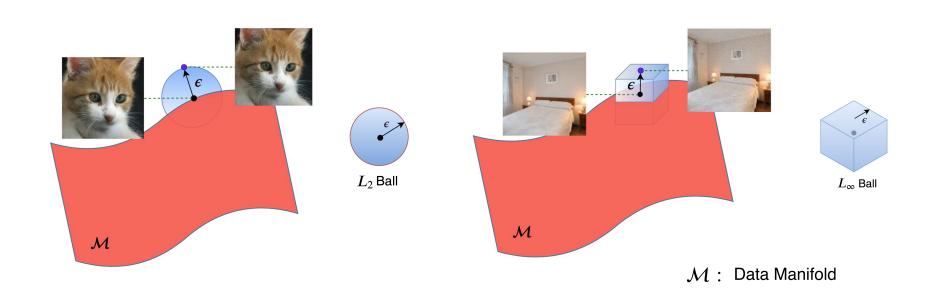


- Look like real images
- Misclassified by the model

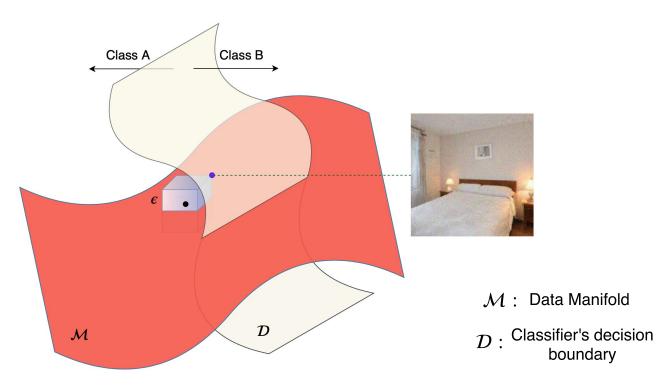
Similarity of Images

$$L_p \text{ similarity: } ||x-\hat{x}||_p < \epsilon \qquad \qquad p = 0, 2, \infty, \dots$$

Manifold of Natural Images



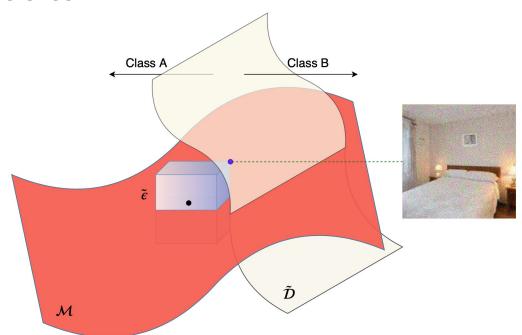
Manifold of Natural Images



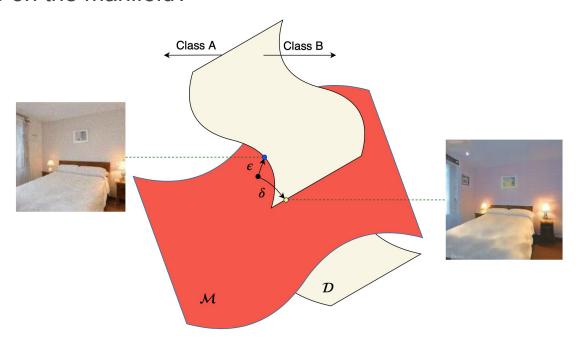
Manifold of Natural Images

Classifiers equipped with defense

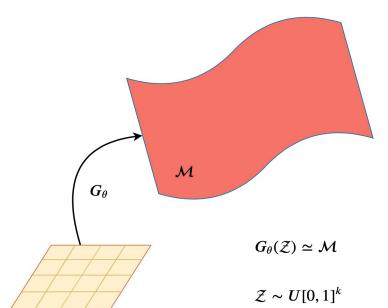
Larger perturbation norms



Can we move on the manifold?



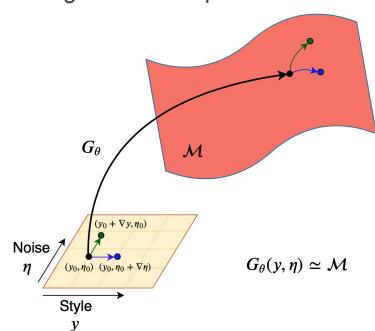
Using a generative model to approximate the manifold

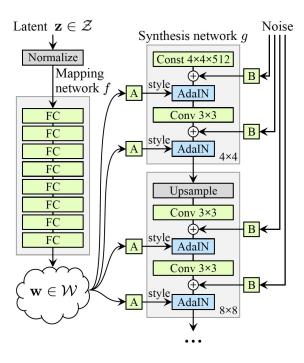


 $G_{ heta}$: Generator

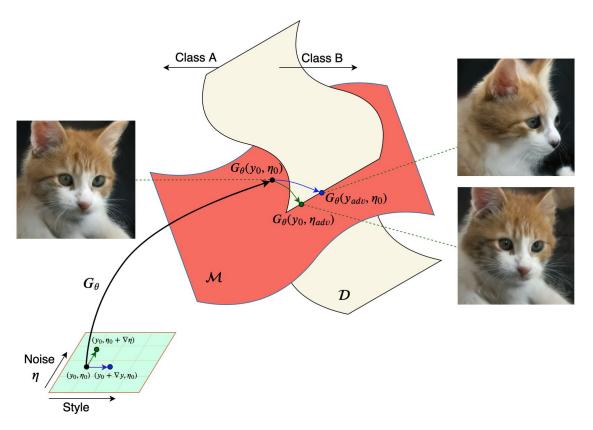
M: Data Manifold

Disentangled Latent Space





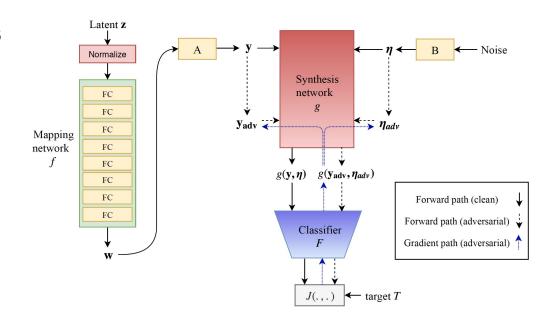
Style-GAN



Iteratively updating the variables

$$\mathbf{y}_{\mathbf{adv}}^{(\mathbf{t}+\mathbf{1})} = \mathbf{y}_{\mathbf{adv}}^{(\mathbf{t})} - \epsilon \cdot \mathrm{sign}(\nabla_{\mathbf{y}_{\mathbf{adv}}^{(\mathbf{t})}} J(F(g(\mathbf{y}_{\mathbf{adv}}^{(\mathbf{t})}, \boldsymbol{\eta}_{\mathbf{adv}}^{(\mathbf{t})})), T))$$

$$\boldsymbol{\eta}_{\mathbf{adv}}^{(\mathbf{t+1})} = \boldsymbol{\eta}_{\mathbf{adv}}^{(\mathbf{t})} - \delta \cdot \operatorname{sign}(\nabla_{\boldsymbol{\eta}_{\mathbf{adv}}^{(\mathbf{t})}} J(F(g(\mathbf{y}_{\mathbf{adv}}^{(\mathbf{t})}, \boldsymbol{\eta}_{\mathbf{adv}}^{(\mathbf{t})})), T))$$

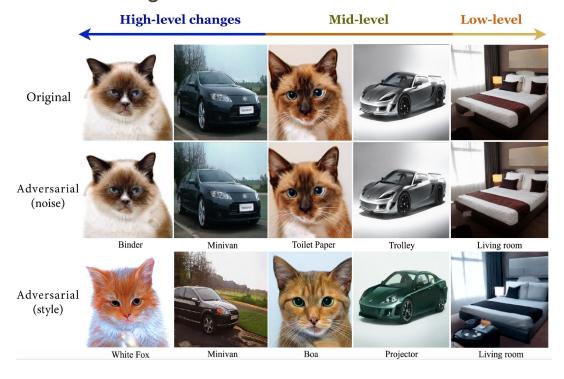


Only manipulating specific layers

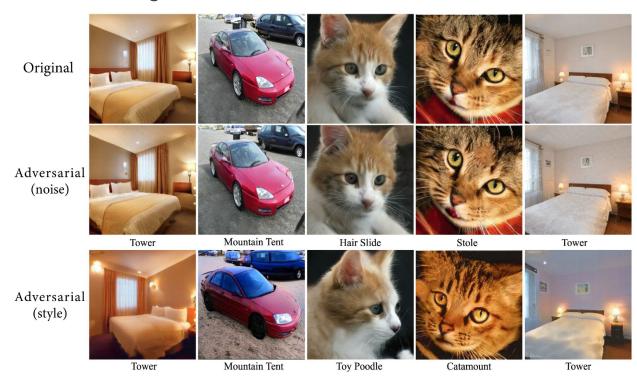
Top layers: high-level changes

Bottom layers: low-level changes

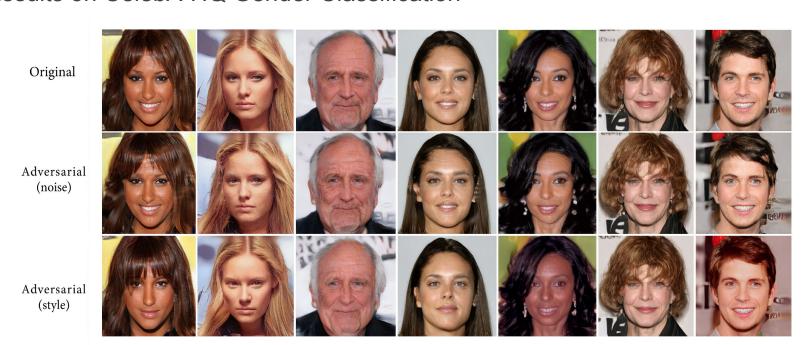
Results on LSUN: Non-targeted



Results on LSUN: Targeted



Results on CelebA-HQ Gender Classification



Adversarial Training

Including adversarial images in training the classifier

- Effective as a defense
- Improves performance on clean images

	Classification (LSUN)		Classification (CelebA-HQ)		Segmentation		Detection	
	Clean	Adversarial	Clean	Adversarial	Clean	Adversarial	Clean	Adversarial
Adv. Trained	89.5%	78.4%	96.2%	83.6%	69.1%	60.2%	40.2%	33.7%
Original	88.9%	0.0%	95.7%	0.0%	67.9%	2.7%	39.0%	2.0%

Adversarial Training

Model	Attack					Mean	
	Clean	GAT	PGD	Spatial	Recolor	Perceptual	
GAT (Ours)	89.5%	78.4%	39.4%	47.8%	52.3%	28.9%	42.1%
AT PGD [27]	81.2%	6.3%	56.7%	5.1%	37.9%	2.8%	13.0%
AT AdvProp [37]	89.4%	7.8%	57.6%	6.0%	38.5%	3.5%	22.7%
AT Spatial [36]	76.3%	5.4%	3.1%	66.0%	4.1%	2.2%	3.7%
AT Recolor [24]	88.6%	4.7%	7.3%	0.4%	60.7%	1.7%	3.5%
PAT [25]	72.4%	18.3%	40.1%	46.3%	42.5%	30.1%	36.5%

User Study

Real or Fake?

- Accuracy on un-adversarial generated images: 74.7%
- Accuracy on style-based adversarial images: 70.8%
- Accuracy on noise-based adversarial images: 74.3%

Correct category?

- Accuracy on style-based images: 98.7%
- Accuracy on noise-based images: 99.2%

Evaluation on Certified Defenses

Certified defenses exist on norm-bounded attacks

Vulnerable to our unrestricted attack

	Accuracy
Clean	63.1%
Adversarial (style)	21.7%
Adversarial (noise)	37.8%

Table 1: Accuracy of a certified classifier equipped with randomized smoothing on adversarial images.